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RAYLEIGH-BÉNARD SIMULATION USING GAS-KINETIC BGK SCHEME IN THE

INCOMPRESSIBLE LIMIT ∗

KUN XU† AND SHIU-HONG LUI‡

Abstract. In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Bénard thermal
convection in the incompressible flow limit, where the flow field and temperature field are described by two
coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models
can be different, the Prandtl number can be changed to any value instead of a fixed Pr = 1 in the original
BGK model. The 2D Rayleigh-Bénard thermal convection is studied and numerical results are compared
with theoretical ones as well as other simulation results.
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1. Introduction. The use of a code for compressible flow to study incompressible fluid has attracted
much attention in the past years. Since compressibility is proportional to the Mach number squared, δρ/ρ ∼
M2, it is negligible once the Mach number is lower than 0.15. In many numerical test cases, such as the cavity
flow, the results from compressible codes are almost identical to the results from incompressible codes[3, 9, 13].
It is also realized that using a compressible code for incompressible simulations have advantages. For example,
a Poisson solver is avoided and parallelization of the code can be easily implemented.

If thermal effects are involved in the incompressible flow, a simple adaptation of a compressible code
here bears potential danger. The reason is that the density varies with the temperature; this variation
cannot in general be neglected, and therefore, even at small velocities, the density of a non-uniformly heated
fluid cannot be supposed constant. For example, across the thermal boundary layer, the pressure is almost
constant. If the temperature changes substantially, say by 10%, in the layer, then the energy equation will
cause a 10% density change due to the ideal equation of state p = ρRT . In reality, the density change
is minimal with any reasonable temperature variation in the liquid. So, the compressibility effect is more
severe in the thermal problem than that for the pure Mach compression problem where δρ/ρ ∼ M2. It
is certainly true that we can use other equations of state to describe a slightly compressible liquid. See
[10] and references therein. There, the ability to recover the correct thermal effects is still questionable.
In most current literature about the application of compressible codes to incompressible flows, thermal
compressibility seems to be ignored.

In order to reduce the compressibility in the compressible code for the thermal problem, we have to,
in some ways, decouple the mass and momentum from the energy equation. In this paper, two pseudo-
temperatures are used to model the Rayleigh-Bénard thermal convection problem in the incompressible
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limit. In the current model, the velocity field and temperature field are described by two BGK models with
different collision times. As a consequence, the Prandtl number can be changed to any value by modifying
the collision times.

2. Gas-Kinetic BGK Models for Rayleigh Bénard Thermal Convection. In this section, we are
going to construct BGK models to study the following incompressible Navier-Stokes equations with thermal
effect,




∂ρ
∂t +∇ · (ρU) = 0,
∂U
∂t + U · ∇U = −∇p

ρ + ν∇2U−G,
∂(ρT )

∂t +∇ · (ρTU) = ∇ · (k∇T ),

(2.1)

where ρ is the density which is a constant in the incompressible limit, U the velocity, p the pressure, k the
coefficient of thermal conductivity, and T the temperature. Note that ρT is the thermal energy. For the
Rayleigh-Bénard convection in a two-dimensional box, the Boussinesq approximation gives

ρG = ρβG0(T − Tm)ŷ,

where G0 is the gravitational constant, Tm the average value of the top and bottom temperatures, ŷ the unit
vector in the vertical direction, and β the coefficient of volume expansion. For authoritative treatments of
this problem, see, for example, [2] and [6].

In order to the recover the above equations, gas-kinetic models can be constructed in the following forms,

∂f

∂t
+ u · ∇f =

feq − f

τν
+ F,(2.2)

∂h

∂t
+ u · ∇h =

heq − h

τc
,(2.3)

where u = (u, v) is the x and y components of the particle velocity. Eq.(2.2) is used to recover the mass
and momentum equations, and also the velocity flow field. Eq.(2.3) is for the thermal energy evolution. The
equilibrium states feq and heq have the following forms

feq = ρ(
λ1

π
)e−λ1((u−U)2),

heq = ρT (
λ2

π
)e−λ2((u−U)2)

where λ1 and λ2 can be expressed as

λ1 =
1

2RT1
and λ2 =

1
2RT2

,

with the two pseudo-temperatures T1 and T2. Here T is the real temperature to be simulated. Note that
T1 and T2 are both constants in the current model, and the value of either T1 or λ1 determines the artificial
sound speed of the flow field. In the above BGK models, the compressibility is determined from Eq.(2.2)
with the equation of state p = ρRT1, which is totally decoupled from the real temperature T . The external
forcing term F in Eq.(2.2) can be approximated as [7],

F = 2λG · (u−U)feq,
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from which the buoyancy force can be recovered.
In the course of particle collisions, the compatibility condition is satisfied in the BGK models,

∫
(feq − f)




1
u

v


 dudv = 0,

and ∫
(heq − h)dudv = 0.

By using Chapman-Enskog expansion, Eq.(2.1) can be recovered exactly in the incompressible limit,
with the viscosity coefficient

ν = τνρRT1

and the heat conduction coefficient

k = τcρRT2.

Different from the original BGK model[1], here both coefficients are decoupled from the fluid temperature
T . As a result, the Prandtl number Pr becomes

Pr =
ν

k
=

τν

τc

T1

T2
,

which can be changed to any value by choosing different τν , τc, T1, or T2.

3. Numerical Scheme for the BGK Models. For a finite volume scheme, we need to evaluate the
numerical fluxes across a cell interface, and the flux function depends on the gas distribution function. In
this section, the BGK scheme to solve Eq.(2.2) and (2.3) for fluxes will be presented.

Firstly, for Eq.(2.2) we are going to use the operator splitting method to solve the equation into two
steps

ft + ufx + vfy =
feq − f

τν
,(3.1)

and

ft = F.(3.2)

For Eq.(3.1), in the smooth incompressible limit, the general solution of f in the above equation at the cell
interface xi+1/2,j and time t can be simplified as[15],

f(xi+1/2,j , yi+1/2,j , t, u, v) =
1
τν

∫ t

−∞
feq(x′, y′, t′, u, v)e−(t−t′)/τν dt′(3.3)

where x′ = xi+1/2,j − u(t− t′) and y′ = yi+1/2,j − v(t− t′) is the trajectory of a particle motion. Generally,
the equilibrium state feq around the center of the cell interface (xi+1/2,j = x0, yi+1/2,j = y0), and the initial
time step (t = 0) can be approximated as

feq(x, y, t, u, v) = (1 + (x− x0)a + (y − y0)b + tA) g0,(3.4)
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where g0 is the local Maxwellian located at the center of a cell interface,

g0 = ρ0

(
λ1

π

)
e−λ1[(u−U0)

2+(v−V0)
2].(3.5)

Note again λ1 is a constant. The dependence of a, b, A in Eq.(3.4) on the particle velocities can be obtained
from the Taylor expansion of a Maxwellian and have the forms

a = a1 + a2u + a3v

= (
1
ρ0

∂ρ

∂x
+ 2λ1U0

∂U

∂x
+ 2λ1V0

∂V

∂x
)− 2λ1U0

∂U

∂x
u− 2λ1V0

∂V

∂x
v,

b = b1 + b2u + b3v

= (
1
ρ0

∂ρ

∂y
+ 2λ1U0

∂U

∂y
+ 2λ1V0

∂V

∂y
)− 2λ1U0

∂U

∂y
u− 2λ1V0

∂V

∂y
v,

A = A1 + A2u + A3v

= (
1
ρ0

∂ρ

∂t
+ 2λ1U0

∂U

∂t
+ 2λ1V0

∂V

∂t
)− 2λ1U0

∂U

∂t
u− 2λ1V0

∂V

∂t
v,

where all parameters (∂ρ/∂x, ∂U/∂x, ∂V/∂x) and (∂ρ/∂y, ∂U/∂y, ∂V/∂y) at t = 0 can be obtained from
the initial reconstructions of the macroscopic variables ∂ρ/∂x, ∂ρ/∂y, ∂(ρU)/∂x.... For example, a 2nd-order
interpolation gives

ρ0 =
1
2
(ρi,j + ρi+1,j)

U0 =
1

2ρ0
((ρU)i,j + (ρU)i+1,j)

V0 =
1

2ρ0
((ρV )i,j + (ρV )i+1,j)

∂ρ

∂x
=

1
∆x

(ρi+1,j − ρi,j)

∂ρ

∂y
=

1
2∆y

(
1
2
(ρi+1,j+1 + ρi,j+1)− 1

2
(ρi+1,j−1 + ρi,j−1)

)

...

where ∆x, ∆y are the cell sizes in the x and y directions.
After substituting Eq.(3.4) into Eq.(3.3), the final gas distribution function at a cell interface is

f(x0, y0, t, u, v) = g0(1 − τν(ua + vb) + (t− τν)A).(3.6)

The only unknown in the above equation is A, which depends on ∂ρ/∂t, ∂U/∂t and ∂V/∂t. Since

feq(x0, y0, t, u, v) = g0(1 + At),
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together with the compatibility condition

∫
(feq − f)




1
u

v


 dudv = 0,

along time t and at x = xi+1/2,j , A can be uniquely determined from

∫
g0(ua + vb + A)




1
u

v


 dudv = 0,

which gives

1
ρ0




∂ρ
∂t

∂(ρU)
∂t

∂(ρV )
∂t


 = − 1

ρ0

∫
(ua + vb)g0




1
u

v


 dudv

= −




a1 < u > +a2 < u2 > +a3 < uv > +b1 < v > +b2 < uv > +b3 < v2 >

a1 < u2 > +a2 < u3 > +a3 < u2v > +b1 < vu > +b2 < uv2 > +b3 < uv2 >

a1 < uv > +a2 < u2v > +a3 < uv2 > +b1 < v2 > +b2 < uv2 > +b3 < v3 >


 ,

where the detail formulation of < unvm > can be found in the Appendix. Therefore, the above equation
uniquely determines ∂ρ/∂t, ∂U/∂t and ∂V/∂t, so A is obtained.

After determining f in Eq.(3.6), the time-dependent numerical fluxes in the x-direction across the cell
interface can be computed as


Fρ

FρU

FρV




i+1/2,j

=
∫

u




1
u

v


g0(1 + τν(au + bv) + (t− τν)A)dudv.(3.7)

Once again, the moments of u and v can be easily obtained from the recursive relation shown in the Appendix.
By integrating the above equation for a time step ∆t, we get the total mass, momentum transport. Similarly,
Gi,j+1/2, the fluxes in the y direction can be obtained by repeating the above process in the y direction. With
both fluxes in the x and y directions, we can update the flow variables inside each cell (i, j) by



ρ

ρU

ρV




n+1

=




ρ

ρU

ρV




n

+
∫ ∆t

0

(
1

∆x
(Fi−1/2,j−Fi+1/2,j)+

1
∆y

(Gi,j−1/2−Gi,j+1/2))dt−




0
0

ρnβG0(T n − Tm)


∆t,

where the effect from Eq.(3.2) has been accounted for in the above equation.
Once Eq.(2.2) is solved, the scheme for Eq.(2.3) can be constructed similarly. For example, we can

expand heq as

heq(x, y, t, u, v) = h0(1 + (x− x0)ah + (y − y0)bh + tAh),

where

h0 = (ρ0T0)
(

λ2

π

)
e−λ2((u−U0)2+(v−V0)2)

at a cell interface, and

ah = ah1 + ah2u + ah3v

= (
1

ρ0T0

∂(ρT )
∂x

+ 2λ2U0
∂U

∂x
+ 2λ2V0

∂V

∂x
)− 2λ2U0

∂U

∂x
u− 2λ2V0

∂V

∂x
v,

5



bh = bh1 + bh2u + bh3v

= (
1

ρ0T0

∂(ρT )
∂y

+ 2λ2U0
∂U

∂y
+ 2λ2V0

∂V

∂y
)− 2λ2U0

∂U

∂y
u− 2λ2V0

∂V

∂y
v,

Ah = Ah1 + Ah2u + Ah3v

= (
1

ρ0T0

∂(ρT )
∂t

+ 2λ2U0
∂U

∂t
+ 2λ2V0

∂V

∂t
)− 2λ2U0

∂U

∂t
u− 2λ2V0

∂V

∂t
v,

which are closely related to the coefficients of a, b and A. In other words, the evolution of h is not totally
independent of the evolution f , and ∂U/∂x, ∂V/∂x, ... in the above equations are the same as the corre-
sponding terms in the equations defining a, b, A earlier. Hence, the only unknowns are T0, ∂T/∂x, ∂T/∂y

and ∂T/∂t. In order to determine all unknowns, at t = 0, the following interpolations can be used to get
ρ0T0 and ∂(ρT )/∂x, ∂(ρT )/∂y. The linear reconstruction of thermal energy ρT is necessary with

ρ0T0 = 0.5((ρT )i,j + (ρT )i+1,j),

and

∂(ρT )
∂x

=
1

∆x
((ρT )i+1,j − (ρT )i,j),

∂(ρT )
∂y

=
1

2∆y
((ρ0T0)i+1/2,j+1 − (ρ0T0)i+1/2,j−1).

The final solution of h at the center of the cell interface is

h(x0, y0, t, u, v) = h0(1− τc(uah + vbh) + (t− τc)Ah),(3.8)

and the ∂T/∂t term in Ah is determined by applying the compatibility condition
∫

(heq − h)dudv = 0,

along (x0, y0, t), which similarly gives
∫

Ahh0dudv = −
∫

(ahu + bhv)h0dudv.

Once h is determined in Eq.(3.8), the numerical flux for the thermal energy is

FρT =
∫

uhdudv,

and the thermal energy inside each cell can be subsequently updated.

4. Results. The Rayleigh-Bénard problem offers a first approach to a complicated convective flow. In
this case, with the gravitational force in the vertical direction a horizontal layer of viscous fluid is heated from
the bottom while the top boundary is maintained at a lower temperature. When the temperature difference
between the top and bottom boundaries is increased above a certain threshold, the static conduction state
becomes unstable to any small disturbance and the system become convective.

In our calculations, the horizontal and vertical length scales are L = 2.0 and H = 1.0, respectively. The
temperatures at the bottom and top are Tbottom = 1.0, Ttop = 0.0, with the difference ∆T = 1.0. Non-slip
boundary conditions are implemented at the bottom and top boundaries by reversing the flow velocities in
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the ’ghost’ cell next to the simulation domain. Periodic boundary conditions are used for the temperature
along the sides of the box. In our current study, we fix G0 = 1.0 and β = 0.1.

The Rayleigh number is defined as

R =
β∆TG0H

3

νk
.

From the above relation and Pr = ν/k, the viscosity coefficient can be determined:

ν =

√
β∆TG0H3Pr

R
.

Consequently, the collision time τν in Eq.(2.2) is fixed with

τν = 2λ1ν,

and τc in Eq.(2.3) is

τc = τν
λ2

λ1Pr
.

Since in the simulations, the CFL time step ∆t is almost a constant, in order to keep the collision time τν to
be around 10−1∆t, we have to choose λ1 properly. In most calculations, λ1 is on the order of 10−1. Although
the numerical scheme is general for any Pr, we used Pr = 1, λ1 = λ2 and τν = τc.

As a first test, we tried to get the critical Rayleigh number for the onset of thermal convection. With a
80× 40 mesh, we have simulated this problem with two supercritical Rayleigh numbers R = 1720 and R =
1735 separately. In each case, we calculate the maximum y-component velocity in the whole computational
domain at each time step. The time-dependent amplitude of the y-velocity on a 80 × 40 mesh is shown in
Figure 5.1, from which we can estimate the critical Rayleigh number by fitting the curve to V ∼ exp(α(R−
Rc)t), where Rc is the critical Rayleigh number. From the exponential growth rates, we found that the
critical Rayleigh number in our calculations is Rc = 1711.17, which is 0.22% away from the theoretical value
1707.76 (which is actually for a box of width 2.0158). For other meshes, the calculated critical Rayleigh
numbers are listed in Table 1.
Table 1. Critical Rayleigh numbers calculated on different meshes. The error is calculated relative to the

theoretical value.

Grid Size Rac Error

20 × 10 1756.22 2.84%

40 × 20 1729.43 1.27%

80 × 40 1711.45 0.22%

theory 1707.76

Once the Rayleigh-Bénard convection is stabilized, the heat transfer between the top and bottom is
greatly enhanced. The enhancement of the heat transfer can be described by the Nusselt number,

Nu = 1 +
< V T >

k∆T/H
,

where V is the vertical velocity, ∆T is the temperature difference between the bottom and top walls, H

is the height of the box, and < ... > represents the average over the whole flow domain. Figure 5.2 is the
calculated relationship between the Nusselt number and the Rayleigh number. The simulation results by
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Clever and Busse [4] is also included. As shown in the figure, our results are very close to those by Clever
and Busse. But, at higher Rayleigh numbers, our values of the Nusselt number is a little bit smaller than
that in [4], and thus underestimating the amount of heat transfer. Similar results are obtained using lattice
Boltzmann methods[12, 8].

Typical temperature and stream function contours are shown in Figures 3 - 8 with Ra = 5, 000, 10, 000
and 50, 000. As the Rayleigh number increases, two trends were observed for the temperature distribution:
enhanced mixing of the hot and cold fluids and an increase in the temperature gradients near the bottom
and top boundaries. Both trends enhance the heat transfer in the box.

As another benchmark problem, we have tried one case in [5]. This problem is that of the two-dimensional
Boussinesq flow in a square with H = L = 1.0 and Prandtl number Pr = 0.71, which is done by setting
λ1 = λ2 and τc = τν/Pr in our code. Both velocity components are zero on the boundaries. The horizontal
walls are insulated, and the vertical sides are at temperatures Tleft = 1.0 and Tright = 0.0. In this case, the
Nusselt number is defined as

Nu = 1 +
< UT >

k∆T/L
.

The results for the streamline and temperature contours at R = 105 are shown in Figure 5.9 and 5.10.
With R = 105, the average Nusselt number in the whole domain is listed in Table 2 for different mesh
sizes. Contrary to the last test case, our result overestimates the heat transfer. A larger Nusselt number is
obtained.
Table 2. Nusselt numbers calculated on different meshes. The error is calculated relative to the numerical

result in [5].

Grid Size Nusselt Number Error

20 × 20 4.590 1.77%

40 × 40 4.563 1.17%

80 × 80 4.540 0.66%

reference [5] 4.510

5. Conclusion. In this paper, a two-temperature gas-kinetic BGK model for convective thermal flow
is constructed. A numerical scheme has subsequently been developed. As an application, the 2D Rayleigh-
Bénard case is studied. The simulation results are very close to those obtained by other methods. To study
the incompressible flow phenomena using the compressible model is an attractive research area. In order to
simulate thermal effects in an incompressible fluid, the decoupling of the energy equation from the mass and
momentum equations seems necessary, because the relation between temperature and volume changes are
different for incompressible and compressible fluids. Compared with the lattice BGK methods, the current
approach with continuous particle velocity has advantages in terms of stability and efficiency. The time step
used in the current method is the CFL time step which is about one order of magnitude larger than the
particle collision time which is usually used in the lattice BGK method[11].

In this paper, the temperature evolution equation only includes advection and diffusion terms. The
viscous heating term in the Navier-Stokes energy equation is ignored due to the simplicity of the model.
The construction of a two-temperature BGK model with the viscous heating term in the thermal energy
evolution equation is an interesting and important problem. The research in this direction will help us to
find an efficient kinetic scheme to simulate incompressible flow, and pave the way to simulate a flow mixing
compressible gas and incompressible liquid.
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Appendix: Moments of the Maxwellian Distribution Function. In the gas-kinetic scheme, we
need to evaluate moments of the Maxwellian distribution function with unbounded integration limits. Here,
we list some general formulas.

Firstly, we assume that the Maxwellian distribution for a two-dimensional flow is

g = ρ(
λ

π
)e−λ((u−U)2+(v−V )2).

Then, by introducing the following notation for the moments of g,

ρ < ... >=
∫

(...)gdudv,

the general moment formula becomes

< unvm >=< un >< vm >,

where n, m are integers. When the integration limits are from −∞ to +∞, we have

< u0 >= 1

< u >= U

..

< un+2 >= U < un+1 > +
n + 1
2λ

< un > .

Similarly,

< v0 >= 1

< v >= V

..

< vm+2 >= V < vm+1 > +
m + 1

2λ
< vm > .
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Fig. 5.1. Time history of the maximum vertical velocities.
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Fig. 5.2. The dependence of Nusselt number on Rayleigh number. The simulation results by Clever and Busse [4] are

also included.
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Fig. 5.3. Temperature contours at R = 5000
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Fig. 5.4. Stream function contours at R = 5000
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Fig. 5.5. Temperature contours at R = 10000
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Fig. 5.6. Stream function contours at R = 10000
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Fig. 5.7. Temperature contours at R = 50000
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Fig. 5.8. Stream function contours at R = 50000
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Fig. 5.9. Stream function contours at R = 100000
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Fig. 5.10. Temperature contours at R = 100000
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